Top 10 Books For Business Success

The first introduction to psychology normally comes in the kind of biology classes. Many biology students already come into class with at least basic knowledge of psychology. They know that their genes determine how their bodies work, how they physically function and, to a certain degree, how they behave or what illnesses they might develop. But hardly any of these students have a clear understanding of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or changed.

In the case of development, the genes passed from one generation to the next only have to survive. Genes are merely instructions for doing things. People, as all living things, are programmed through thousands of years of natural selection to engage in behavior that’s survival oriented. The foundation for this programming is that the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behavior.

Concerning understanding what is going on genetically, we are still in the era of molecular biology. In this framework, genes are simply packets of information carrying directions. This is the way humans, plants and animals have been evolving for centuries. However, in the last 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics offers a new lens through which we can view the relationships between behaviour and genes.

The molecular basis for behaviors and human memory is in fact quite simple – it’s all about the epigenome. The Epigenome is a cellular memory storage that determines whether a behavior will be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behavior exists in all of us, but in varying quantities. Most of the variations come from the variation in the copies of genes within the mobile memory storage of the individual. The copy of the gene which determines the behavior is known as the epigome. It’s this particular copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences was shown in a landmark study on twins. For many years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior which existed between people who had identical twins but whose traits were very different. This study provided the first evidence of the significance of the epigenome in human behavior and its link to abnormal behavioral disorders like autism.

Even though the significance of this Epigenome in psychology has been established, many in the emotional area are reluctant to accept its potential as a substantial factor in mental illness. One reason for this is it is hard to define an actual genetic sequence or locus that causes a behavioral disorder. Another problem is that there are just too many genetic differences between individuals to use a single DNA sequence to determine mental illness. Finally, even though the research on the Epigenome has been promising, more work has to be done to determine the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it may be utilised as a foundation for studying other complex diseases that have complicated genetic components.

If you’re interested in knowing more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My website discusses the exciting new technologies that are available today to better understand how Epigenetics affects behavior and the susceptibility to disease. You can even hear me speak on my epigenetics and autism blog. My research into Epigenetics is centered on understanding the environmental causes of disease, but I have also been involved in studying the relationship between Epigenetics and Autism. My future posts will also discuss diseases of the brain that can be affected by Epigenetics.