They Don’t Know Me Son David Goggins

The first introduction to psychology usually comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They know that their genes determine how their bodies work, how they function and, to a certain degree, how they behave or what illnesses they may develop. But very few of these students have a clear comprehension of what exactly DNA is, where it is found in the body, why it causes problems, and how it can be manipulated or altered.

In the case of development, the genes passed from one generation to the next only need to survive. Genes are nothing more than instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to participate in behavior that is survival oriented. The foundation for this programming is that the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behavior.

Concerning understanding what is happening genetically, we’re still in the era of molecular biology. Within this frame, genes are simply packets of information carrying directions. This is how humans, plants and animals have been growing for thousands of years. Nevertheless, in the last 50 years or so, a revolution in the field of psychology has occurred known as molecular biology or genomics. Genomics offers a new lens through which we can see the relationships between behavior and genes.

The molecular basis for human and behaviors memory is in fact quite simple – it is all about the epigenome. The Epigenome is a cellular memory storage that determines whether or not a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behavior exists in all of us, but in varying quantities. Most of the variations come from the variation in the copies of genes within the mobile memory storage of the individual. The copy of the gene that determines the behavior is called the epigome. It is this particular copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences was revealed in a landmark study on twins. For years, autism research was based upon research on twins. However, it was discovered that there was substantial heritability (hitability) to behavior that existed between individuals who had identical twins but whose traits were quite different. This study provided the first evidence of the significance of the epigenome in human behavior and its connection to abnormal behavioral disorders such as autism.

Although the importance of this Epigenome in psychology has been established, many in the psychological area are reluctant to accept its potential as a significant factor in mental illness. One reason for this is that it is difficult to define a real genetic sequence or locus that causes a behavioral disorder. Another problem is that there are simply too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, although the research on the Epigenome has been promising, more work needs to be done to determine the role that genetics play in complex diseases such as schizophrenia. If this finding holds true, it can be utilised as a foundation for analyzing other complex diseases that have complex genetic components.

If you’re interested in learning more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My site discusses the exciting new technologies that are available today to better understand how Epigenetics affects behavior and the susceptibility to disease. You can even hear me speak on my epigenetics and autism blog. My research into Epigenetics is centered on understanding the environmental causes of disease, but I also have been involved in analyzing the relationship between Epigenetics and Autism. My future posts will also talk about diseases of the brain that can be affected by Epigenetics.