David Goggins Snooze Button

The first introduction to psychology usually comes in the kind of biology classes. Many biology students already come into class with at least basic understanding of psychology. They understand that their genes determine how their bodies work, how they function and, to a certain degree, how they behave or what illnesses they might develop. But hardly any of these students have a clear comprehension of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or altered.

In the case of evolution, the genes passed from one generation to the next just have to survive. Genes are merely instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to engage in behavior that’s survival oriented. The basis for this programming is that the expression of specific genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, grandparents, or other kin will determine such behavior.

In terms of understanding what is going on genetically, we are still in the age of molecular biology. In this frame, genes are just packets of information carrying instructions. This is the way humans, plants and animals have been evolving for centuries. Nevertheless, in the past 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics offers a new lens through which we could view the relationships between behaviour and genes.

The molecular basis for human and behaviors memory is in fact quite simple – it is all about the epigenome. The Epigenome is a cellular memory storage that determines whether a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behaviour exists in all of us, but in varying amounts. Most of the variations come from the variation in the copies of genes within the cellular memory storage of the person. The copy of the gene which determines the behavior is called the epigome. It is this specific copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences has been revealed in a landmark study on twins. For years, autism research was based upon research on twins. However, it was discovered that there was substantial heritability (hitability) to behavior which existed between individuals who had identical twins but whose traits were quite different. This study provided the first evidence of the significance of the epigenome in human behaviour and its link to abnormal behavioral disorders such as autism.

Although the importance of the Epigenome in psychology has been established, many in the psychological area are hesitant to accept its potential as a significant factor in mental illness. One reason for this is that it is difficult to define an actual genetic sequence or locus that causes a behavioral disorder. Another issue is that there are just too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, although the research on the Epigenome has been promising, more work needs to be done to find out the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it can be utilised as a foundation for analyzing other complex diseases that have complex genetic elements.

If you’re interested in knowing more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My site discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can also hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the environmental causes of disease, but I have also been involved in studying the relationship between Epigenetics and Autism. My future articles will also talk about diseases of the brain which can be impacted by Epigenetics.