David Goggins Knots

The first introduction to psychology normally comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They know that their genes determine how their bodies work, how they physically function and, to a certain extent, how they behave or what illnesses they might develop. But very few of these students have a clear understanding of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or changed.

In the case of development, the genes passed from one generation to the next just need to survive. Genes are merely instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to engage in behavior that is survival oriented. The basis for this programming is the expression of certain genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, grandparents, or other kin will determine such behaviour.

Concerning understanding what is going on genetically, we are still in the era of molecular biology. Within this framework, genes are simply packets of information carrying directions. This is the way humans, plants and animals have been evolving for centuries. However, in the last 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics offers a new lens through which we could view the relationships between behavior and genes.

The molecular basis for behaviors and human memory is actually quite simple – it’s all about the epigenome. The Epigenome is a mobile memory storage which determines whether or not a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behaviour exists in all of us, but in varying amounts. Most of the variations come from the variation in the copies of genes inside the mobile memory storage of the individual. The copy of the gene that determines the behaviour is known as the epigome. It is this specific copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences has been shown in a landmark study on twins. For many years, autism research was based upon research on twins. However, it was discovered that there was substantial heritability (hitability) to behavior that existed between people who had identical twins but whose traits were quite different. This study provided the first evidence of the significance of the epigenome in human behaviour and its link to abnormal behavioral disorders like autism.

Even though the importance of this Epigenome in psychology was established, many in the psychological area are reluctant to accept its potential as a substantial element in mental illness. One reason for this is that it is hard to define an actual genetic sequence or locus that causes a behavioral disorder. Another issue is that there are just too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, even though the study on the Epigenome has been promising, more work needs to be done to determine the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it can be utilised as a foundation for studying other complex diseases that have complex genetic elements.

If you’re interested in knowing more about Epigenetics and how it applies to psychology, I highly recommend that you follow the links below. My website discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can even hear me speak on my epigenetics and autism blog. My research into Epigenetics is centered on understanding the ecological causes of disease, but I have also been involved in analyzing the relationship between Epigenetics and Autism. My future posts will also discuss diseases of the brain that can be affected by Epigenetics.